

Automating Gap Analysis of Learning Outcomes

Vijay Mago, Department of Computer Science, Lakehead University, Thunder Bay April 16, 2018

Automating Gap Analysis of Learning Outcomes through Natural Language Processing 2017-17-ONCAT

Daniel Kivi

Sahib Singh

Atish Pawar

Andrew Heppner

Dr Vijay Mago Dr Nancy Luckai

Automating Gap Analysis of Learning Outcomes

Text Extraction

Natural Language Processing Visualization of results

Automating Gap Analysis of Learning Outcomes

Extracting Learning Outcomes

Introduction to Databases

Syllabus

Web Page

http://www.cs.northwestern.edu/~pdinda/db

Instructor

Peter A. Dinda 1890 Maple Avenue, Room 338 847-467-7859 <u>pdinda@cs.northwestern.edu</u> Office hours: Thursdays, 2-4pm or by appointment

Teaching assistants

Ananth Sundararaj 1890 Maple Avenue, Room 332 847-491-7150 ais@cs.northwestern.edu

Office hours: Mondays, 10:15am-12:15pm, Wednesdays 11:15am-12:15pm or by appointment

Bin Lin 1890 Maple Avenue, Room 224 847-491-7159

binlin@cs.northwestern.edu Office hours: Tuesdays, 10-12am, Wednesdays 3:30-4:30pm or by appointment

Location and Time

1890 Maple Avenue, CS Department classroom, MWF 9-9:50am

Prerequisites

Required Highly recommended Highly recommended

Highly recommended

CS 311 or equivalent data structures course CS 213 or equivalent computer systems course Familiarity with concepts from discrete math such as set theory Some familiarity with Perl or other scripting language

CO	<u>C</u>	OURSE OUTLINE					
LLEO	SCHOOL:	School of Engineering Technology and Applied Science					
ц Ш Ш	DEPARTMENT:	Information and Communication Engineering Technology (ICET)					
	PROGRAM: Software Engineering Technician/Technologist (3109, 311 3408, 3409, 3419, 3508, and 3508)						
	COURSE TITLE:	Introduction to Databases					
	COURSE CODE:	COMP122					
	TOTAL COURSE	HOURS: 60 Hours					
	PRE-REQUISITES	CO-REQUISITES: COMP100					
	COURSE ELIGIBILITY FOR PRIOR LEARNING ASSESSMENT AND RECOGNITION (PLAR): Yes						
	ORIGINATED BY:	Bhim Harlal					
	REVISED BY:	Bhim Harlal					
	DATE:	August 2009					
	APPROVED BY:						
		Chairperson/Dean					

Automating Gap Analysis of Learning Outcomes

Natural Language Processing

- Dependency parsing to establish syntactical relationship between words
- Example 1: Prepare financial statements and related disclosures

Fig 1. Dependency parsing

Natural Language Processing

- Dependency parsing to establish syntactical relationship between words
- Example 2: Analyze and account for complex business transactions

Fig 2. Dependency parsing

Both the learning objectives are parsed separately and the parsing information is compared.

Automating Gap Analysis of Learning Outcomes

Data Extraction - Challenges

Course outlines do not have a defined format

Assessing the relevance of the text in the document

Documents may have header/footer text

Text might be divided into text columns, which makes it important to analyze the layout of the document before proceeding with text extraction.

Natural Language Processing

1. Similarity between peculiar words in a domain e.g. in computer science, we have different programming languages: Java, Python, C, C++. Using a general purpose corpus (vocabulary) would not yield precise similarities between such terms.

2. Size of the corpus pertaining to a specific domain We decided to use Wikipedia as corpus since it covers all the domains and is constantly updated with the new terms and content.

3. Cleaning the textual content from Wikipedia pages to get rid of ASCII characters, URLs and unnecessary tags.

4. Forming collocations in the entire corpus and then training the model e.g. replacing "computer science" with "computer_science" and "programming languages" with "programming_languages"

5. An algorithm to establish similarity between two learning objectives and extending it to cover broader scope such as course comparison and program comparison

Website: http://www.loaga.science

Test User Credientials: Username: testuser1@loaga.science Password: password

Contact: Vijay Mago: vmago@lakeheadu.ca

Automating Gap Analysis of Learning Outcomes

Bloom's Taxonomy

Though Bloom's taxonomy is the suggested standard for designing the course outline, we have found that a considerable number of course drafts differ significantly from the norm. To use the Bloom's taxonomy, we establish the 'Bloom Index'. The Bloom Index represents the gap between two learning outcomes according to the verbs in LOs.

Finding Learning Outcome

Visualizing the Mapping of Outcomes, Content, and Curriculum between programs to support transfer

Nerissa Mulligan, Brian Frank, Roderick Turner, Mary Pierce, Jake Kaupp, Vijay Mago

2015 ONCAT Project : Framework

2016 ONCAT Project : Comparisons

Content vs. complexity

First year calculus content

Functions, limits, derivatives; optimization, rate problems, exponentials, logarithms, inverse trigonometric functions; exponential growth as an example of a differential equation. Fundamental Theorem of Calculus, Riemann integral; applications to problems involving areas, volumes, mass, charge, work, etc. Some integration techniques.

Cognitive complexity? Novelty of problems? How scaffolded?

Learning Outcomes

analyze, interpret, and produce electrical and electronics *drawings*, *technical reports* including other related documents and graphics.

Concept: engineering drawing

Bloom's cognitive level: analyze interpret produce

Anderson and Krathwohl, 2001: Cognitive Process

SOLO Taxonomy: Structural complexity

Categorizing Instructor's Scaffolding

Prescribed	The activity instructs the student to follow a prescribed sequence of calculations or an explicitly stated approach.
Constrained	The activity description does not specify the solution; the general approach is implied through question sequencing, headings, etc.
Scaffolded	The activity requires the student to choose from a range of approaches.
Adopted	The activity requires the student to synthesize different methods and formulate novel methods or apply existing ones to novel applications.

Learning outcomes assessments for two core courses in Electrical/Electronic engineering in (a) technology and (b) engineering exam questions as scored by content specialists using a three-part framework.

Goal: Automate some analysis and visualization

Focus Groups

- Two focus groups
- 19 Institutions

31 Participants from 6 different programs

Academic Quality Lead Academic Manager (Nursing Program) Admission Assistant **Assistant Professor** Assistant Registrar Associate Dean Associate Professor **Business Program Contact** Chair (Admissions Committee) Credit Transfer Officer Curriculum Consultant Dean

Director (School of Kinesiology) **Director** (Centre for Academic Excellence) **Enrolment Services and** Strategic Partnerships International Recruitment Officer **Registrar's Office** Manager Transfer Credit Advisor Pathways and Credit Transfer Coordinator

Program Coordinator (Bachelor of Applied Health Information Science) Program Head Program Manager Student Advisor Undergraduate Academic Advisor

Survey Questions

- 1. What information do you typically have when assessing student transfers coming into (or going out of) your program?
- 2. What information would you ideally *like to have* (but do not) when assessing student transfers coming into (or going out of) your program?

ranscripts	PLO	course assessment tools
course syllabi	institutional information	course textbook lists
CLO	course success	other

- 3. What do you think are the most common barriers to transfers in your program?
- 4. Please tell us a bit about any tools, assessments or methodologies that you have found successful when dealing with transfers that you can share with us.

Transfer Information

Program	Transcripts	Course svllabi	CLOs	PLOs	Institutional information	Course	other
		Synabi				rates	
1	\checkmark	\checkmark			\checkmark		
2	\checkmark	\checkmark	\checkmark				
3	\checkmark						
4	\checkmark	\checkmark	\checkmark			\checkmark	⇔
5	\checkmark	\checkmark	\checkmark				
6	\checkmark	\checkmark	\checkmark				
7	\checkmark				\checkmark		
8	\checkmark	\checkmark					*
9	\checkmark	\checkmark			\checkmark		
10	\checkmark	\checkmark	\checkmark				
11	\checkmark	\checkmark			\checkmark		
12	\checkmark	\checkmark	\checkmark				
13	\checkmark	\checkmark	\checkmark				
14	\checkmark	\checkmark	\checkmark				
15	\checkmark	\checkmark	\checkmark		\checkmark		
16	\checkmark	\checkmark	\checkmark	\checkmark			•
17	\checkmark	\checkmark			\checkmark		
18			\checkmark	\checkmark			
19	\checkmark	\checkmark					
20		\checkmark	\checkmark				•
21	\checkmark	\checkmark			✓		

Transfer Information Wish List

Program	Transcripts	Course svllabi	CLOs	PLOs	Institutional information	Course success	other
		ey name				rates	
1					\checkmark		
2							
3		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
4							
5				\checkmark			\$
6				\checkmark	\checkmark		
7		\checkmark	\checkmark	\checkmark			
8			\checkmark	\checkmark	\checkmark	\checkmark	*
9			\checkmark	\checkmark			
10				\checkmark			
11							
12							
13				\checkmark	\checkmark		
14				\checkmark	\checkmark	\checkmark	
15							
16							٢
17			\checkmark	\checkmark			
18							
19			\checkmark	\checkmark	\checkmark		*
20				\checkmark			
21							

Primary Barriers to Transfer

Time

Cost

Equivalency

Changes to Courses

Availability of Information

Course Alignment

Accreditation

Age of Credits

Primary Barriers to Transfer

Time

Cost

Equivalency

Changes to Courses

Availability of Information

Course Alignment

Accreditation

Age of Credits

Tips for assessing transfer

- Course syllabi online
- Pathways
- Bridging Programs
- Students
- Learning Outcomes
- Percentage overlap
- Database
- Shared folders

- Official transfer credits
- Backwards design & course-tocourse
- Credit Transfer Evaluation
 Guide
- Transfer agreements for business

Focus Group Questions

1. What information do you use to evaluate transfer now?

- Title
- Description
- Learning Outcomes
- Assessment Criteria
- Textbook list
- Degree of difficulty

- Work samples
- Program calendar
- Credit hours
- Program accreditation map

Focus Group Questions

 If you were to setup a multi-institutional transfer agreement between diploma programs and degrees in your discipline, what information would you use?

- Past performance of students
- Well-written learning outcomes
- Context of learning outcomes
- Conversations between instructors
- Accreditation
- Professional registration status of instructor

Focus Group Questions

3. What analysis, comparison, and/or visualization would you find useful to accomplish Q2?

- Course-to-course
- Program-to-program
- Gap Analysis
- Heat map
- Beyond Bloom's

- Institutional matches
- Record of past equivalencies
- Ability to "drill down"

TRAIL: TRAnsfer Improvement Link

create visualizations to help support student transfer and the creation of pathways in Ontario.

Web Application Requirements

- Easy upload of course materials
- Automated categorization of **outcome verb**, curriculum structure, prerequisites.
- Simple user interface
- Output visualizations
- Draw on existing tools when possible.
- Ability to save imported programs
- Code publically available.

Original Functional Requirements

Input:

- Pull information in real-time
- Access PLOs, CLOs, WLOs
- Textbook lists
- Transcripts
- Adaptable

Output:

- Course-level overlap analysis
- Gap analysis
- Information about existing pathways
- Customizable
- Flexible

Web Application Elements

Information Elements

- Landing page (login)
- FAQ
- How to Use
- Background
- Contact Us

Tool Elements

0:00 / 2:10:41 V

An Inte compar outlines

Start Cor

Do

ractive ar	or and the second se	×		
res multip	Create a	in Account		
s semant	First Name			
mparing	Last Name			
	Email			
	Password			
	Si	gn up		
	\rightleftharpoons	0	Eq	
pload cument	Compare Learning Outcomes	Visualize Learning Outcomes	Analyze The Data	

nstitute Program Name Course Document	
Program Name Course Document	
Program Name Course Document	
Course Document	
Deep & Deep o File	
Drag & Drop a File	
or	
Opidad	
MECH 319 - Fabrication Design - Fall 2016	~
Course Name	
Quality Control 1	
Learning Outcomes	

Engineering

Ξ

Ξ

сот	municate	•	creat	te	deliver	plan	1	establish	produ	ice	perform	арр	ply
communica	te	ci	reate	d	eliver	First year design		First year design	First year design	Fi	rst year design	First yea design	ar
draw d	onstruc	follow	demonstra	te summar	ize	describe r	ecogniza	e review	define	identify	/ evaluate	com	npare
First year design	First year design	First yea design	r First year design	summarize	Fire	i ysar design	First year design	First year design	First year design	First year design	First year design	First desi	it year ign

Engineering technology

plan develop design establish use **Design and drafting Design and drafting Design and drafting Design and drafting** Design and drafting monitor analyze prepare apply Design and drafting Design and drafting Design and drafting **Design and drafting**

Learning Objective Automated Gap Analysis

Vijay Mago

Progress

Task	Status
Application Design	Completed
Solo/bloom tree map	Completed
Solo/Bloom heatmap	Completed
Pie chart(Additional)	Completed
Export visuals as pdf/png format	Completed
Add new course to existing program	Completed
Add more than one program in one session	Completed
Store user's sessions and comparisons	In progress
Show details of courses user uploads	In progress
Share by email	In progress
Design of Other pages	In progress
Extraction of learning outcomes and course name from pdf	In progress

Activity: Small groups

Review the visualizations

- 1. Do you think these current visualizations provide useful information? How could they be used?
- 2. How could the visualizations be adapted, or new analysis added, to support building transfer pathways?

PollEv.com/brianfrank116

Where this is going

Develop proposal for province-wide pathway between engineering technology and engineering

Continue developing the app to support pathway development

Identify other groups who would like to adapt and expand the tool

Visualizing the Mapping of Outcomes, Content, and Curriculum between programs to support transfer

Nerissa Mulligan, Brian Frank, Roderick Turner, Mary Pierce, Jake Kaupp, Vijay Mago

Brian.Frank@QueensU.ca, @BFrankQueensu

Roderick.Turner@senecacollege.ca

MPierce@fanshawec.ca